1: "Category Theory.zip" and Simplicial Sets

Florian Warg

November 7, 2025

These notes roughly follow the contents of [Wag25, §1] and [Lan21, §1]

1 Adjunctions and equivalences

Definition 1.1. Let $L: \mathcal{C} \hookrightarrow \mathcal{D}: R$ be functors. Write $L \dashv R$ if there exists an iso

$$\operatorname{Hom}_{\mathcal{D}}(L-,-) \cong \operatorname{Hom}_{\mathcal{C}}(-,R-)$$

in Fun($\mathcal{C}^{op} \times \mathcal{D}$, **Set**).

Lemma 1.2. $L: C \longrightarrow D$ has a right adjoint \iff every presheaf

$$\operatorname{Hom}_{\mathcal{D}}(L-,d): \mathcal{C}^{\operatorname{op}} \longrightarrow \mathbf{Set}$$

is representable. (A dual result holds for left adjoints.)

Proof. ⇒ is clear, so we show \Leftarrow . Identify $\operatorname{Hom}_{\mathcal{D}}(L-,-)$: $\mathcal{C}^{\operatorname{op}} \times \mathcal{D} \longrightarrow \operatorname{\mathbf{Set}}$ with $F \colon \mathcal{D} \longrightarrow \operatorname{PSh}(\mathcal{C})$. By assumption, all $Fd \in \operatorname{EssIm}(\mathfrak{k})$. Let $\mathfrak{k}^{-1} \colon \operatorname{EssIm}(\mathfrak{k}) \longrightarrow \mathcal{C}$ be a quasi-inverse. The composite

$$\mathcal{D} \xrightarrow{F} \operatorname{EssIm}(\mathfrak{z}) \xrightarrow{\mathfrak{z}^{-1}} \mathcal{C}$$

defines a right adjoint R.

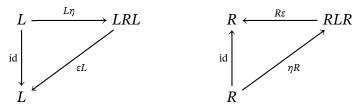
Remark 1.3. Let $L: C \Longrightarrow \mathcal{D}: R$ be adjoints $(L \dashv R)$. The iso

$$\operatorname{Hom}_{\mathcal{D}}(Lc, Lc) \cong \operatorname{Hom}_{\mathcal{C}}(c, RLc)$$

sends id_{Lc} to η_c : $c \longrightarrow RLc$. This defines the unit η : $id \Longrightarrow RL$. The iso

$$\operatorname{Hom}_{\mathcal{C}}(Rd,Rd) \cong \operatorname{Hom}_{\mathcal{D}}(LRd,d)$$

sends id_{Rc} to ε_d : $LRd \rightarrow d$. This defines the counit ε : $LR \Longrightarrow id$. They satisfy the triangle identities.



Exercise 1.4. Let $L: \mathcal{C} \leftrightarrows \mathcal{D} : R$ be functors. TFAE:

- 1. $L \dashv R$
- 2. There exist η : id $\Longrightarrow RL$ and ε : $LR \Longrightarrow$ id that satisfy the triangle identities.

Corollary 1.5. Let $L: C \Longrightarrow \mathcal{D}: R$ be adjoints, \mathcal{J} any category. Then we have adjunctions

$$L_*$$
: Fun(\mathcal{J}, \mathcal{C}) \Longrightarrow Fun(\mathcal{J}, \mathcal{D}) : R_*
 R^* : Fun(\mathcal{C}, \mathcal{J}) \leftrightarrows Fun(\mathcal{D}, \mathcal{J}) : L^*

Proof. It suffices to construct the unit and counit. These are inherited from $L \dashv R$. \Box **Lemma 1.6.** Let $L: C \leftrightarrows \mathcal{D}: R$ be an adjunction.

- 1. L is fully faithful $\iff \eta$: id \implies RL is an iso.
- 2. If L is fully faithful and R reflects isos, then $L \dashv R$ is an adjoint equivalence.

Proof. Let $x, y \in C$. By definition of η (see Remark 1.3) we can factor $\sharp(\eta_y)_x$ via

$$\operatorname{Hom}_{\mathcal{C}}(x,y) \xrightarrow{L} \operatorname{Hom}_{\mathcal{D}}(Lx,Ly) \xrightarrow{\operatorname{adjunction}} \operatorname{Hom}_{\mathcal{C}}(x,RLy)$$

$$\stackrel{\sharp}{\underset{\sharp(\eta_{v})_{x}}{\longrightarrow}} \operatorname{Hom}_{\mathcal{C}}(x,RLy)$$

It follows that

$$L$$
 is fully faithful \iff all $\sharp(\eta_y)_x$ are bijections \iff all $\sharp(\eta_y)$ are isos \iff η is an iso.

This shows 1. To see 2. consider the triangle identity

$$R \xrightarrow{\eta R} RLR \xrightarrow{R\varepsilon} R$$

and note that if η is an iso, then so is ηR . Hence $R\varepsilon$ is an iso, and thus ε is an iso. \square

2 Limits and colimits

Definition 2.1. Let \mathcal{J} be a category. Denote by const: $\mathcal{C} \longrightarrow \operatorname{Fun}(\mathcal{J}, \mathcal{C})$ the functor that sends $c \in \mathcal{C}$ to the constant diagram.

A limit of $F: \mathcal{J} \longrightarrow \mathcal{C}$ is an object $\lim F \in \mathcal{C}$ satisfying

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{C})}(\operatorname{const}_{(-)},F) \cong \operatorname{Hom}_{\mathcal{C}}(-,\lim F).$$

A colimit of F is an object colim $F \in C$ satisfying

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{C})}(F,\operatorname{const}_{(-)})\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} F,-).$$

Remark 2.2. If all diagrams $F: \mathcal{J} \longrightarrow \mathcal{C}$ admit (co)limits, applying Lemma 1.2 yields

$$\operatornamewithlimits{colim}_{\mathcal{I}}\dashv \operatornamewithlimits{const}\dashv \varinjlim_{\mathcal{I}}$$

for free. In particular, taking (co)limits is functorial.

Lemma 2.3. Let $L: C \Longrightarrow \mathcal{D}: R$ be adjoints.

- 1. L preserves colimits.
- 2. R preserves limits.

Proof. Suppose $F: \mathcal{J} \longrightarrow \mathcal{C}$ has a colimit. Using $L_* \dashv R_*$ and Lemma 1.2 we obtain

$$\begin{split} \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{D})}(LF,\operatorname{const}_{(-)}) &\cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{C})}(F,R\operatorname{const}_{(-)}) \\ &\cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{C})}(F,\operatorname{const}_{R(-)}) \\ &\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} F,R-) \\ &\cong \operatorname{Hom}_{\mathcal{D}}(L\operatorname{colim} F,-). \end{split}$$

The limit case is analogous.

Lemma 2.4. Suppose all \mathcal{J} -shaped (co)limits exist in \mathcal{D} . Then the same holds for Fun(\mathcal{C} , \mathcal{D}) and (co)limits are computed pointwise.

Proof. We have a commutative diagram

$$\operatorname{Fun}(\mathcal{C},\mathcal{D}) \xrightarrow{\operatorname{const}^F} \operatorname{Fun}(\mathcal{J},\operatorname{Fun}(\mathcal{C},\mathcal{D})) \xrightarrow{\cong} \operatorname{Fun}(\mathcal{C},\operatorname{Fun}(\mathcal{J},\mathcal{D}))$$

By Corollary 1.5 we have $\operatorname{const}^{\mathcal{C}}_* \dashv \lim_*$. Hence, const^F has a right adjoint. The pointwise condition comes from the top-right iso. The case for colimits is analogous. \square

Corollary 2.5. Hom-functors preserve limits.

Proof. Suppose $F: \mathcal{J} \longrightarrow \mathcal{C}$ has a limit. For $c \in \mathcal{C}$ we have natural isos

$$\operatorname{Hom}_{\mathcal{C}}(c, \lim F) \cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathcal{C})}(\operatorname{const}_{c}, F)$$

$$\cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \operatorname{PSh}(\mathcal{C}))}(\sharp \operatorname{const}_{c}, \sharp F)$$

$$\cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \operatorname{PSh}(\mathcal{C}))}(\operatorname{const}_{\sharp(c)}, \sharp F)$$

$$\cong \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(\sharp(c), \lim(\sharp F))$$

$$\cong \lim \operatorname{Hom}_{\mathcal{C}}(c, F -).$$

where we use that **Set** is complete and limits in PSh(C) are pointwise. The $Hom_C(-,c)$ case is an exercise.

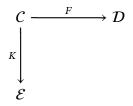
Kan extensions 3

Remark 3.1. We will now develop the machinery that provides the adjunctions

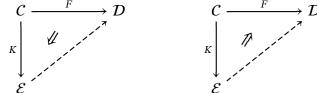
$$|\cdot|$$
: sSet \Longrightarrow Top: Sing, h: sSet \Longrightarrow Cat:N, (-) \times X: sSet \Longrightarrow sSet: F(X,-)

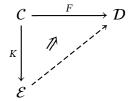
for free. To this end we have to study Kan extensions along \(\mathcal{L} \).

Suppose we are given functors F and K as follows.



Our goal is to "fill this horn" in Cat universally by a 2-cell (not necessarily as a commutative triangle) that provides a weak extension of F. Since natural transformations are oriented, there are two approaches.





Definition 3.2. The left Kan extension of $F: \mathcal{C} \longrightarrow \mathcal{D}$ along $K: \mathcal{C} \longrightarrow \mathcal{E}$ is defined via

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{E},\mathcal{D})}(F,K^*(-)) \cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{E},\mathcal{D})}(\operatorname{Lan}_K F,-).$$

The right Kan extension of $F \colon \mathcal{C} \longrightarrow \mathcal{D}$ along $K \colon \mathcal{C} \longrightarrow \mathcal{E}$ is defined via

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{C},\mathcal{D})}(K^*(-),F) \cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{E},\mathcal{D})}(-,\operatorname{Ran}_K F).$$

Remark 3.3. If every F admits Kan extensions, Lemma 1.2 provides adjunctions

$$\operatorname{Lan}_K(-) \dashv K^* \dashv \operatorname{Ran}_K(-)$$
.

Exercise 3.4. If \mathcal{D} is cocomplete, then all Lan_K F exist and can be computed via

$$(\operatorname{Lan}_K F)(e) \cong \operatorname{colim}_{Kc \to e} Fc \quad (\forall e \in \mathcal{E})$$

where the colimit is over $(K \downarrow \text{const}_e)$.

Corollary 3.5. If \mathcal{D} is cocomplete and K is fully faithful, then $\operatorname{Lan}_K(-)$ is fully faithful.

Proof. By Lemma 1.6 it suffices to show that each η_F : $F \Longrightarrow (\operatorname{Lan}_K F) \circ K$ is an iso. Since K is fully faithful, we have $(K \downarrow \operatorname{const}_{Kx}) \cong \mathcal{C}_{/x}$. The latter has the terminal object id_x , so taking the colimit corresponds to evaluating at this object:

$$(\operatorname{Lan}_K F)(Kx) \cong \underset{Kc \to Kx}{\operatorname{colim}} Fc \cong \underset{c \to x}{\operatorname{colim}} Fc \cong Fx$$

Lemma 3.6. Every presheaf is a colimit of representables. Let $F \in PSh(C)$. Then

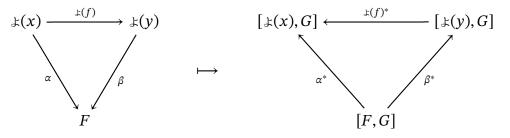
$$F \cong \underset{\sharp(c) \to F}{\operatorname{colim}} \, \sharp(c)$$

where we index over ($\downarrow \downarrow \text{const}_F$).

Proof. For every $G \in PSh(C)$ we have

$$\operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}\big(\operatorname{colim}_{\natural(c) \to F} \natural(c), G\big) \cong \lim_{\natural(c) \to F} \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}\big(\natural(c), G\big) \stackrel{(\star)}{\cong} \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(F, G).$$

To see (\star) , note that $\operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(F,G)$ has a canonical cone structure by precomposition:



Corollary 3.7. Let $F: \mathcal{C} \longrightarrow \mathcal{D}$. If \mathcal{D} is cocomplete, then $\operatorname{Lan}_{k} F$ has a right adjoint.

Proof. By Lemma 1.2 it suffices to show that each

$$\operatorname{Hom}_{\mathcal{D}}(\operatorname{Lan}_{\mathbb{F}} F -, d)$$
: $\operatorname{PSh}(\mathcal{C})^{\operatorname{op}} \longrightarrow \operatorname{Set}$

is representable. Using the Kan extension formula, we have

$$\begin{aligned} \operatorname{Hom}_{\mathcal{D}}((\operatorname{Lan}_{\sharp}F)(X),d) &\cong \operatorname{Hom}_{\mathcal{D}}(\underset{\sharp(c) \to X}{\operatorname{colim}}Fc,d) \\ &\cong \lim_{\sharp(c) \to X} \operatorname{Hom}_{\mathcal{D}}(Fc,d) \\ &\cong \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(X,\operatorname{Hom}_{\mathcal{D}}(F-,d)) \end{aligned}$$

so the right adjoint is given by the functor

$$R: \mathcal{D} \longrightarrow PSh(\mathcal{C}), \quad d \longmapsto Hom_{\mathcal{D}}(F-, d).$$

Theorem 3.8. Suppose D is cocomplete. The Yoneda embedding $\sharp \colon \mathcal{C} \longrightarrow \mathrm{PSh}(\mathcal{C})$ induces a weak equivalence by restriction

$$\sharp^* \colon \operatorname{Fun}^{\operatorname{colim}}(\operatorname{PSh}(\mathcal{C}),\mathcal{D}) \xrightarrow{\simeq} \operatorname{Fun}(\mathcal{C},\mathcal{D})$$

where $\operatorname{Fun}^{\operatorname{colim}}(\operatorname{PSh}(\mathcal{C}), \mathcal{D})$ is the full subcategory of $\operatorname{Fun}(\operatorname{PSh}(\mathcal{C}), \mathcal{D})$ spanned by the colimit preserving functors. Furthermore, every such colimit preserving functor admits a right adjoint.

Proof. Since each Lan_k F has a right adjoint, Lan_k $\dashv k^*$ restricts to

$$\operatorname{Lan}_{\sharp} \colon \operatorname{Fun}(\mathcal{C}, \mathcal{D}) \leftrightarrows \operatorname{Fun}^{\operatorname{colim}}(\operatorname{PSh}(\mathcal{C}), \mathcal{D}) : \sharp^*.$$

Since \sharp is fully faithful, so is $\operatorname{Lan}_{\sharp}$ by Corollary 3.5. Finally, \sharp^* reflects isos on colimit preserving functors since every presheaf is a colimit of representables by Lemma 3.6. \square

4 Simplicial sets

Definition 4.1. The simplex category Δ has the following data.

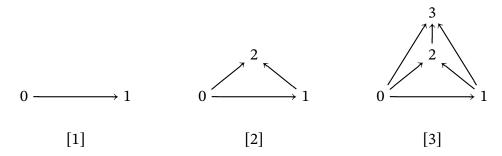
• Objects: totally ordered sets $[n] \coloneqq \{0 < 1 < \dots < n\}$ (where $n \in \mathbb{N}_{\geq 0}$)

• Morphisms: monotone (i.e. weakly increasing) maps.

A simplicial set is a presheaf on Δ , i.e. a functor $X: \Delta^{op} \longrightarrow \mathbf{Set}$. The category of simplicial sets is defined as $\mathbf{sSet} := \mathrm{PSh}(\Delta)$.

Remark 4.2. We can view Δ as a full subcategory of **Cat** by identifying [n] with its posetal category.

Remark 4.3. The category [n] gives a combinatorial description of an n-simplex with labeled vertices.



• For each $i \in [n]$ there is a unique injective morphism

$$d^i$$
: $[n-1] \rightarrow [n]$

that does not hit *i*, called the *i*-th coface map.

• For each $j \in [n-1]$ there is a unique surjective morphism

$$s^{j}$$
: $[n] \longrightarrow [n-1]$

that hits *j* twice, called the *j*-th codegeneracy map.

For $X \in \mathbf{sSet}$ we introduce the following notation.

- $X_n := X([n]) \in \mathbf{Set}$ are called the *n*-simplices of *X*.
- $d_i := X(d^i) \colon X_n \longrightarrow X_{n-1}$ are called the face maps of X.
- $s_j := X(s^j)$: $X_{n-1} \longrightarrow X_n$ are called the degeneracy maps of X.

 $x \in X_n$ is called degenerate, if $x \in \text{im}(s_j)$ for some j.

Definition 4.4. The (standard) n-simplex is defined as $\Delta^n := \sharp([n]) = \operatorname{Hom}_{\Delta}(-,[n]) \in$ **sSet**. We introduce the following sub-simplicial sets.

•
$$\partial \Delta^n := \bigcup_{i=0}^n \operatorname{im}(\sharp(d^i): \Delta^{n-1} \longrightarrow \Delta^n)$$
, the boundary of Δ^n ,

•
$$\partial \Delta^n := \bigcup_{i=0}^n \operatorname{im}(\sharp(d^i) \colon \Delta^{n-1} \longrightarrow \Delta^n)$$
, the boundary of Δ^n ,
• $\Lambda^n_j := \bigcup_{\substack{i=0 \ i \neq j}}^n \operatorname{im}(\sharp(d^i) \colon \Delta^{n-1} \longrightarrow \Delta^n)$, the j -horn in Δ^n

Furthermore, we call Λ_j^n an

- inner horn, if 0 < j < n,
- outer horn, if j = 0 or j = n.

Definition 4.5. Let $|\Delta^n| \in \mathbf{Top}$ be the geometric standard simplex, given by the convex hull of the standard basis vectors $e_0, e_1, \dots, e_n \in \mathbb{R}^{n+1}$. Given $f : [m] \longrightarrow [n]$, we obtain

$$|f|: |\Delta^m| \longrightarrow |\Delta^n|$$

by linearly extending $e_i \mapsto e_{f(i)}$. This defines a functor $\Delta \to \mathbf{Top}$. By Theorem 3.8 this has a unique colimit-preserving extension, the geometric realization

$$|\cdot|: \mathbf{sSet} \longrightarrow \mathbf{Top}, \quad |X| \cong \underset{\Delta^n \longrightarrow X}{\operatorname{colim}} |\Delta^n|$$

$$\Delta \longrightarrow \mathbf{Top}$$

$$|\cdot|$$
Sing

whose right adjoint must be the singular complex functor

Sing: **Top**
$$\longrightarrow$$
 sSet, Sing(X) = Hom_{**Top**}($|\Delta^{(-)}|, X$).

Exercise 4.6. Show that the geometric realization of a simplicial set has a canonical CW-complex structure.

Definition 4.7. Every (small) category C defines a simplicial set

$$N(C): \Delta^{op} \hookrightarrow \mathbf{Cat}^{op} \xrightarrow{\mathrm{Hom}_{\mathbf{Cat}}(-,C)} \mathbf{Set}$$

called the *nerve* of C. By Theorem 3.8 we get an adjunction

$$h: \mathbf{sSet} \Longrightarrow \mathbf{Cat} : \mathbf{N}$$

where h is the unique colimit preserving extension of $\Delta \hookrightarrow \mathbf{Cat}$. We call h the homotopy category functor.

Definition 4.8. For each $X \in \mathbf{sSet}$, the functor $(-) \times X$: $\mathbf{sSet} \longrightarrow \mathbf{sSet}$ preserves colimits (because it does so pointwise). By Theorem 3.8 it must be the extension of

$$\Delta \longrightarrow \mathbf{sSet}, \quad [n] \longmapsto \Delta^n \times X.$$

We obtain an adjunction

$$(-) \times X$$
: sSet \Longrightarrow sSet : $F(X, -)$

where $F(X,Y)_n \cong \operatorname{Hom}_{\operatorname{sSet}}(\Delta^n \times X,Y)$ defines the internal hom in **sSet**, also called the function complex.

References

- [Lan21] M. Land. *Introduction to Infinity-Categories*. Compact Textbooks in Mathematics. Springer International Publishing, 2021. ISBN: 9783030615246. DOI: 10.1007/978-3-030-61524-6.
- [Wag25] Ferdinand Wagner. "∞-Categories in Topology". Available at https://florianadler.github.io/inftyCats/inftyCats.pdf. Sept. 2025.